Algorithm and Flowchart

 

 

Problem Solving using Computers

Introduction to Problem-Solving using Computers

       Problem solving is a process of transforming the description of a problem into the solution.

       Computer based problem solving is a systematic process of designing, implementing and using programming tools.

        Set of steps that a machine can perform for solving a problem.

The following six steps must be followed to solve a problem using computer.

1.   Problem Analysis

2.   Program Design - Algorithm, Flowchart and Pseudocode

3.   Coding

4.   Compilation and Execution

5.   Debugging and Testing

6.   Program Documentation

What is an Algorithm?

In computer programming terms, an algorithm is a set of well-defined instructions to solve a particular problem. It takes a set of input(s) and produces the desired output. For example,

An algorithm to add two numbers:

1.   Take two number inputs

2.   Add numbers using the + operator

3.   Display the result

 

Algorithm 1: Add two numbers entered by the user

Step 1: Start
Step 2: Declare variables num1, num2 and sum. 
Step 3: Read values num1 and num2. 
Step 4: Add num1 and num2 and assign the result to sum.
        sum←num1+num2 
Step 5: Display sum 
Step 6: Stop

Algorithm 2: Find the largest number among three numbers

Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4: If a > b
           If a > c
              Display a is the largest number.
           Else
              Display c is the largest number.
        Else
           If b > c
              Display b is the largest number.
           Else
              Display c is the greatest number.  
Step 5: Stop

Algorithm 3: Find the factorial of a number

Step 1: Start
Step 2: Declare variables n, factorial and i.
Step 3: Initialize variables
          factorial ← 1
          i ← 1
Step 4: Read value of n
Step 5: Repeat the steps until i = n
     5.1: factorial ← factorial*i
     5.2: i ← i+1
Step 6: Display factorial
Step 7: Stop

Algorithm 4: Check whether a number is prime or not

Step 1: Start
Step 2: Declare variables n, i, flag.
Step 3: Initialize variables
        flag ← 1
        i ← 2  
Step 4: Read n from the user.
Step 5: Repeat the steps until i=(n/2)
     5.1 If remainder of n÷i equals 0
            flag ← 0
            Go to step 6
     5.2 i ← i+1
Step 6: If flag = 0
           Display n is not prime
        else
           Display n is prime
Step 7: Stop 

 


Algorithm 5: Find the Fibonacci series till the term less than 1000

Step 1: Start 
Step 2: Declare variables first_term,second_term and temp. 
Step 3: Initialize variables first_term ← 0 second_term ← 1 
Step 4: Display first_term and second_term 
Step 5: Repeat the steps until second_term ≤ 1000 
     5.1: temp ← second_term 
     5.2: second_term ← second_term + first_term 
     5.3: first_term ← temp 
     5.4: Display second_term 
Step 6: Stop

Flowcharts

 

What is a Flowchart? 
Flowchart is a graphical representation of an algorithm. Programmers often use it as a program-planning tool to solve a problem. It makes use of symbols which are connected among them to indicate the flow of information and processing. 
The process of drawing a flowchart for an algorithm is known as “flowcharting”. 


Draw flowchart for Calculating average  of two numbers











 


 

SHARE

Milan Tomic

Hi. I’m Designer of Blog Magic. I’m CEO/Founder of ThemeXpose. I’m Creative Art Director, Web Designer, UI/UX Designer, Interaction Designer, Industrial Designer, Web Developer, Business Enthusiast, StartUp Enthusiast, Speaker, Writer and Photographer. Inspired to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment

Problems Classification

  Problems Classification Problem classification is the process of assigning a level, based on predefined criteria. Problem classification h...